MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

VIPER: an industrially scalable high-current high-temperature superconductor cable

Author(s)
Hartwig, Zachary Seth; Vieira, Rui F; Sorbom, Brandon N; Badcock, Rodney A; Bajko, Marta; Beck, William K.; Castaldo, Bernardo; Craighill, Christopher L; Davies, Michael; Estrada, Jose; Fry, Vincent; Golfinopoulos, Theodore; Hubbard, Amanda E; Irby, James Henderson; Kuznetsov, Sergey; Lammi, Christopher J; Michael, Philip C; Mouratidis, Theodore; Murray, Richard A.; Pfeiffer, Andrew T.; Pierson, Samuel Z; Radovinsky, Alexey; Rowell, Michael D; Salazar, Erica E; Segal, Michael; Stahle, Peter W; Takayasu, Makoto; Toland, Thomas L; Zhou, Lihua; ... Show more Show less
Thumbnail
DownloadAccepted version (793.7Kb)
Open Access Policy

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
High-temperature superconductors (HTS) promise to revolutionize high-power applications like wind generators, DC power cables, particle accelerators, and fusion energy devices. A practical HTS cable must not degrade under severe mechanical, electrical, and thermal conditions; have simple, low-resistance, and manufacturable electrical joints; high thermal stability; and rapid detection of thermal runaway quench events. We have designed and experimentally qualified a vacuum pressure impregnated, insulated, partially transposed, extruded, and roll-formed (VIPER) cable that simultaneously satisfies all of these requirements for the first time. VIPER cable critical currents are stable over thousands of mechanical cycles at extreme electromechanical force levels, multiple cryogenic thermal cycles, and dozens of quench-like transient events. Electrical joints between VIPER cables are simple, robust, and demountable. Two independent, integrated fiber-optic quench detectors outperform standard quench detection approaches. VIPER cable represents a key milestone in next-step energy generation and transmission technologies and in the maturity of HTS as a technology.
Date issued
2020-10
URI
https://hdl.handle.net/1721.1/133134
Department
Massachusetts Institute of Technology. Plasma Science and Fusion Center
Journal
Superconductor Science and Technology
Publisher
IOP Publishing
Citation
Hartwig, Zachary S et al. "VIPER: an industrially scalable high-current high-temperature superconductor cable." Superconductor Science and Technology 33, 11 (October 2020): LT01.
Version: Author's final manuscript
ISSN
1361-6668
0953-2048

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.