Show simple item record

dc.contributor.authorPec, Matej
dc.contributor.authorAl Nasser, Saleh Mohammed
dc.date.accessioned2021-10-27T16:43:08Z
dc.date.available2021-10-27T16:43:08Z
dc.date.issued2021-05
dc.date.submitted2021-03
dc.identifier.issn2169-9313
dc.identifier.issn2169-9356
dc.identifier.urihttps://hdl.handle.net/1721.1/133157
dc.description.abstractThe brittle-viscous transition in the lithosphere occurs in a region where many large earthquakes nucleate. To study this transition, we sheared bimineralic aggregates with varying ratio of quartz and potassium feldspar. We deformed the samples in a solid-medium deformation apparatus at temperature, T = 750°C and pressure, Pc = 800 MPa under either constant displacement rate or constant load boundary conditions. Under constant displacement rate, samples reach high shear stress (τ = 0.4–1 GPa depending on mineral ratio) and then weaken. Under constant load, the strain rate shows low sensitivity to stress below τ ≈ 400 MPa, followed by a higher stress sensitivity (stress exponent, n = 9–13) at higher stresses irrespective of mineral ratio. Strain is localized along “slip zones” in a C and C′ orientation. The material in the slip zones shows extreme grain size reduction and flow features. At peak strength, 1–2 vol% of the sample is composed of slip zones that are straight and short. With increasing strain, the slip zones become anastomosing and branching and occupy up to 9 vol%; this development is concomitant with strain-weakening of the sample. Slip zones delimit larger cataclastic lenses, which develop a weak foliation. Our results suggest that strain localization leads to microstructural transformation of the rocks from a crystalline solid to a fluid-like material in the slip zones. The measured rheological response is a combination of viscous flow in the slip zones and cataclastic flow in coarser-grained lenses and can be modeled as a frictional slider coupled in parallel with a viscous dashpot.en_US
dc.language.isoen
dc.publisherAmerican Geophysical Union (AGU)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1029/2020jb021262en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceProf. Pecen_US
dc.titleFormation of Nanocrystalline and Amorphous Materials Causes Parallel Brittle‐Viscous Flow of Crustal Rocks: Experiments on Quartz‐Feldspar Aggregatesen_US
dc.typeArticleen_US
dc.identifier.citationPec, Matej and Saleh Al Nasser. "Formation of nanocrystalline and amorphous materials causes parallel brittle-viscous flow of crustal rocks: Experiments on quartz-feldspar aggregates." Journal of Geophysical Research: Solid Earth 126, 5 (May 2021): e2020JB021262. © 2021 American Geophysical Unionen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciencesen_US
dc.relation.journalJournal of Geophysical Research: Solid Earthen_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2021-10-26T18:19:39Z
dspace.orderedauthorsPec, M; Al Nasser, Sen_US
dspace.date.submission2021-10-26T18:19:41Z
mit.journal.volume126en_US
mit.journal.issue5en_US
mit.licenseOPEN_ACCESS_POLICY
mit.metadata.statusCompleteen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record