Show simple item record

dc.contributor.authorBains, William
dc.contributor.authorPetkowski, Janusz Jurand
dc.contributor.authorZhan, Zhuchang
dc.contributor.authorSeager, Sara
dc.date.accessioned2021-10-27T18:03:36Z
dc.date.available2021-10-27T18:03:36Z
dc.date.issued2021-04-27
dc.identifier.urihttps://hdl.handle.net/1721.1/133191
dc.description.abstractThe chemistry of life requires a solvent, which for life on Earth is water. Several alternative solvents have been suggested, but there is little quantitative analysis of their suitability as solvents for life. To support a novel (non-terrestrial) biochemistry, a solvent must be able to form a stable solution of a diverse set of small molecules and polymers, but must not dissolve all molecules. Here, we analyze the potential of concentrated sulfuric acid (CSA) as a solvent for biochemistry. As CSA is a highly effective solvent but a reactive substance, we focused our analysis on the stability of chemicals in sulfuric acid, using a model built from a database of kinetics of reaction of molecules with CSA. We consider the sulfuric acid clouds of Venus as a test case for this approach. The large majority of terrestrial biochemicals have half-lives of less than a second at any altitude in Venus’s clouds, but three sets of human-synthesized chemicals are more stable, with average half-lives of days to weeks at the conditions around 60 km altitude on Venus. We show that sufficient chemical structural and functional diversity may be available among those stable chemicals for life that uses concentrated sulfuric acid as a solvent to be plausible. However, analysis of meteoritic chemicals and possible abiotic synthetic paths suggests that postulated paths to the origin of life on Earth are unlikely to operate in CSA. We conclude that, contrary to expectation, sulfuric acid is an interesting candidate solvent for life, but further work is needed to identify a plausible route for life to originate in it.en_US
dc.publisherMultidisciplinary Digital Publishing Instituteen_US
dc.relation.isversionofhttp://dx.doi.org/10.3390/life11050400en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceMultidisciplinary Digital Publishing Instituteen_US
dc.titleEvaluating Alternatives to Water as Solvents for Life: The Example of Sulfuric Aciden_US
dc.typeArticleen_US
dc.identifier.citationLife 11 (5): 400 (2021)en_US
dc.identifier.mitlicensePUBLISHER_CC
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2021-05-13T14:34:07Z
dspace.date.submission2021-05-13T14:34:07Z
mit.metadata.statusAuthority Work and Publication Information Neededen_US
mit.metadata.statusAuthority Work and Publication Information Needed


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record