MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Terahertz Driven Reversible Topological Phase Transition of Monolayer Transition Metal Dichalcogenides

Author(s)
Zhou, Jian; Xu, Haowei; Shi, Yongliang; Li, Ju
Thumbnail
DownloadPublished version (2.791Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution 4.0 International license https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
This paper shows how terahertz light can drive ultrafast topological phase transitions in monolayer transition metal dichalcogenides (TMDs). The phase transition is induced by the light interaction with both electron and phonon subsystems in the material. The mechanism of such a phase transition is formulated by thermodynamics theory: the Gibbs free energy landscape can be effectively modulated under light, and the relative stability between different (meta-)stable phases can be switched. This mechanism is applied to TMDs and reversible phase transitions between the topologically trivial 2H and nontrivial 1T' phases are predicted, providing appropriate light frequency, polarization, and intensity are applied. The large energy barrier on the martensitic transformation path can be significantly reduced, yielding a small energy barrier phase transition with fast kinetics. Compared with other phase transition schemes, light illumination has great advantages, such as its non-contact nature and easy tunability. The reversible topological phase transition can be applicable in high-resolution fast data storage and in-memory computing devices.
Date issued
2021
URI
https://hdl.handle.net/1721.1/133228
Department
Massachusetts Institute of Technology. Department of Nuclear Science and Engineering; Massachusetts Institute of Technology. Department of Materials Science and Engineering
Journal
Advanced Science
Publisher
Wiley

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.