MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Stabilized Co‐Free Li‐Rich Oxide Cathode Particles with An Artificial Surface Prereconstruction

Author(s)
Zhu, Zhi; Gao, Rui; Waluyo, Iradwikanari; Dong, Yanhao; Hunt, Adrian; Lee, Jinhyuk; Li, Ju; ... Show more Show less
Thumbnail
DownloadAccepted version (2.900Mb)
Open Access Policy

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
© 2020 Wiley-VCH GmbH Li-rich metal oxide (LXMO) cathodes have attracted intense interest for rechargeable batteries because of their high capacity above 250 mAh g−1. However, the side effects of hybrid anion and cation redox (HACR) reactions, such as oxygen release and phase collapse that result from global oxygen migration (GOM), have prohibited the commercialization of LXMO. GOM not only destabilizes the oxygen sublattice in cycling, aggravating the well-known voltage fading, but also intensifies electrolyte decomposition and Mn dissolution, causing severe full-cell performance degradation. Herein, an artificial surface prereconstruction (ASR) for Li1.2Mn0.6Ni0.2O2 particles with a molten-molybdate leaching is conducted, which creates a crystal-dense anion-redox-free LiMn1.5Ni0.5O4 shell that completely encloses the LXMO lattice (ASR-LXMO). Differential electrochemical mass spectroscopy and soft X-ray absorption spectroscopy analyses demonstrate that GOM is shut down in cycling, which not only stabilizes HACR in ASR-LXMO, but also mitigates the electrolyte decomposition and Mn dissolution. ASR-LXMO displays greatly stabilized cycling performance as it retains 237.4 mAh g−1 with an average discharge voltage of 3.30 V after 200 cycles. More crucially, while the pristine LXMO cycling cannot survive 90 cycles in a pouch full-cell matched with a commercial graphite anode and lean (2 g A−1 h−1) electrolyte, ASR-LXMO shows high capacity retention of 76% after 125 cycles in full-cell cycling.
Date issued
2020
URI
https://hdl.handle.net/1721.1/133240
Department
Massachusetts Institute of Technology. Department of Nuclear Science and Engineering; Massachusetts Institute of Technology. Department of Materials Science and Engineering
Journal
Advanced Energy Materials
Publisher
Wiley

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.