MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Inference of experimental radial impurity transport on Alcator C-Mod: Bayesian parameter estimation and model selection

Author(s)
Sciortino, F; Howard, NT; Marmar, ES; Odstrcil, T; Cao, NM; Dux, R; Hubbard, AE; Hughes, JW; Irby, JH; Marzouk, YM; Milanese, LM; Reinke, ML; Rice, JE; Rodriguez-Fernandez, P; ... Show more Show less
Thumbnail
DownloadSubmitted version (1.949Mb)
Open Access Policy

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
© 2020 IAEA, Vienna We present a fully Bayesian approach for the inference of radial profiles of impurity transport coefficients and compare its results to neoclassical, gyrofluid and gyrokinetic modeling. Using nested sampling, the Bayesian impurity transport inference (BITE) framework can handle complex parameter spaces with multiple possible solutions, offering great advantages in interpretative power and reliability with respect to previously demonstrated methods. BITE employs a forward model based on the pySTRAHL package, built on the success of the well-known STRAHL code (Dux 2003 Fusion Sci Technol. 44 708-15), to simulate impurity transport in magnetically-confined plasmas. In this paper, we focus on calcium (Ca, Z = 20) laser blow-off injections into Alcator C-Mod plasmas. Multiple Ca atomic lines are diagnosed via high-resolution x-ray imaging crystal spectroscopy and vacuum ultra-violet measurements. We analyze a sawtoothing I-mode discharge for which neoclassical and turbulent (quasilinear and non-linear) predictions are also obtained. We find good agreement in diffusion across the entire radial extent, while turbulent convection and density profile peaking are estimated to be larger in experiment than suggested by theory. Efforts and challenges associated with the inference of experimental pedestal impurity transport are discussed.
Date issued
2020
URI
https://hdl.handle.net/1721.1/133298
Department
Massachusetts Institute of Technology. Plasma Science and Fusion Center; Massachusetts Institute of Technology. Department of Physics; Massachusetts Institute of Technology. Department of Aeronautics and Astronautics
Journal
Nuclear Fusion
Publisher
IOP Publishing

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.