MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Classification of Degenerate Verma Modules for E(5, 10)

Author(s)
Cantarini, Nicoletta; Caselli, Fabrizio; Kac, Victor
Thumbnail
DownloadPublished version (728.7Kb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution 4.0 International license https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
<jats:title>Abstract</jats:title><jats:p>Given a Lie superalgebra <jats:inline-formula><jats:alternatives><jats:tex-math>$${\mathfrak {g}}$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>g</mml:mi> </mml:math></jats:alternatives></jats:inline-formula> with a subalgebra <jats:inline-formula><jats:alternatives><jats:tex-math>$${\mathfrak {g}}_{\ge 0}$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mi>g</mml:mi> <mml:mrow> <mml:mo>≥</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> </mml:msub> </mml:math></jats:alternatives></jats:inline-formula>, and a finite-dimensional irreducible <jats:inline-formula><jats:alternatives><jats:tex-math>$${\mathfrak {g}}_{\ge 0}$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mi>g</mml:mi> <mml:mrow> <mml:mo>≥</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> </mml:msub> </mml:math></jats:alternatives></jats:inline-formula>-module <jats:italic>F</jats:italic>, the induced <jats:inline-formula><jats:alternatives><jats:tex-math>$${\mathfrak {g}}$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>g</mml:mi> </mml:math></jats:alternatives></jats:inline-formula>-module <jats:inline-formula><jats:alternatives><jats:tex-math>$$M(F)={\mathcal {U}}({\mathfrak {g}})\otimes _{{\mathcal {U}}({\mathfrak {g}}_{\ge 0})}F$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>M</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>F</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>=</mml:mo> <mml:mi>U</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>g</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:msub> <mml:mo>⊗</mml:mo> <mml:mrow> <mml:mi>U</mml:mi> <mml:mo>(</mml:mo> <mml:msub> <mml:mi>g</mml:mi> <mml:mrow> <mml:mo>≥</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> </mml:msub> <mml:mo>)</mml:mo> </mml:mrow> </mml:msub> <mml:mi>F</mml:mi> </mml:mrow> </mml:math></jats:alternatives></jats:inline-formula> is called a finite Verma module. In the present paper we classify the non-irreducible finite Verma modules over the largest exceptional linearly compact Lie superalgebra <jats:inline-formula><jats:alternatives><jats:tex-math>$${\mathfrak {g}}=E(5,10)$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>g</mml:mi> <mml:mo>=</mml:mo> <mml:mi>E</mml:mi> <mml:mo>(</mml:mo> <mml:mn>5</mml:mn> <mml:mo>,</mml:mo> <mml:mn>10</mml:mn> <mml:mo>)</mml:mo> </mml:mrow> </mml:math></jats:alternatives></jats:inline-formula> with the subalgebra <jats:inline-formula><jats:alternatives><jats:tex-math>$${\mathfrak {g}}_{\ge 0}$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mi>g</mml:mi> <mml:mrow> <mml:mo>≥</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> </mml:msub> </mml:math></jats:alternatives></jats:inline-formula> of minimal codimension. This is done via classification of all singular vectors in the modules <jats:italic>M</jats:italic>(<jats:italic>F</jats:italic>). Besides known singular vectors of degree 1,2,3,4 and 5, we discover two new singular vectors, of degrees 7 and 11. We show that the corresponding morphisms of finite Verma modules of degree 1,4,7, and 11 can be arranged in an infinite number of bilateral infinite complexes, which may be viewed as “exceptional” de Rham complexes for <jats:italic>E</jats:italic>(5, 10).</jats:p>
Date issued
2021
URI
https://hdl.handle.net/1721.1/133312
Department
Massachusetts Institute of Technology. Department of Mathematics
Journal
Communications in Mathematical Physics
Publisher
Springer Science and Business Media LLC

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.