MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Reduction of Dispersion in Ultrasonically-Enhanced Micropacked Beds

Author(s)
Navarro-Brull, Francisco J; Teixeira, Andrew R; Zhang, Jisong; Gómez, Roberto; Jensen, Klavs F
Thumbnail
DownloadAccepted version (915.7Kb)
Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
© 2017 American Chemical Society. Channeling of gas can reduce mass transfer performance in multiphase micropacked-bed reactors. Viscous and capillary forces cause this undesired and often unpredictable phenomenon in systems with catalyst particle sizes of hundreds of micrometers. In this work, we acoustically modify flow in a micropacked-bed reactor to reduce gas channeling by applying high-power sonication at low ultrasonic frequencies (∼40 kHz). Experimental residence time distributions reveal two orders of magnitude reduction in dispersion with ultrasound, allowing for nearly plug-flow behavior at high flow rates in the bed. Sonication appears to partially fluidize the packed-bed under pressurized cocurrent two-phase flow, effectively improving dispersion characteristics.
Date issued
2018
URI
https://hdl.handle.net/1721.1/133316
Department
Massachusetts Institute of Technology. Department of Chemical Engineering
Journal
Industrial and Engineering Chemistry Research
Publisher
American Chemical Society (ACS)

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.