Show simple item record

dc.contributor.authorPatrinos, Aristides
dc.contributor.authorMacCracken, Michael
dc.contributor.authorDrell, Dan
dc.contributor.authorAnnas, George
dc.contributor.authorArkin, Adam
dc.contributor.authorChurch, George
dc.contributor.authorCook-Deegan, Robert
dc.contributor.authorJacoby, Henry
dc.contributor.authorLidstrom, Mary
dc.contributor.authorMelillo, Jerry
dc.contributor.authorMilo, Ron
dc.contributor.authorPaustian, Keith
dc.contributor.authorReilly, John
dc.contributor.authorRoberts, Richard J
dc.contributor.authorSegrè, Daniel
dc.contributor.authorSolomon, Susan
dc.contributor.authorWoolf, Dominic
dc.contributor.authorWullschleger, Stan D
dc.contributor.authorYang, Xiaohan
dc.contributor.authorDelisi, Charles
dc.date.accessioned2021-10-27T19:52:14Z
dc.date.available2021-10-27T19:52:14Z
dc.date.issued2020
dc.identifier.urihttps://hdl.handle.net/1721.1/133344
dc.description.abstract<jats:p>The long atmospheric residence time of CO<jats:sub>2</jats:sub> creates an urgent need to add atmospheric carbon drawdown to CO<jats:sub>2</jats:sub> regulatory strategies. Synthetic and systems biology (SSB), which enables manipulation of cellular phenotypes, offers a powerful approach to amplifying and adding new possibilities to current land management practices aimed at reducing atmospheric carbon. The participants (in attendance: Christina Agapakis, George Annas, Adam Arkin, George Church, Robert Cook-Deegan, Charles DeLisi, Dan Drell, Sheldon Glashow, Steve Hamburg, Henry Jacoby, Henry Kelly, Mark Kon, Todd Kuiken, Mary Lidstrom, Mike MacCracken, June Medford, Jerry Melillo, Ron Milo, Pilar Ossorio, Ari Patrinos, Keith Paustian, Kristala Jones Prather, Kent Redford, David Resnik, John Reilly, Richard J. Roberts, Daniel Segre, Susan Solomon, Elizabeth Strychalski, Chris Voigt, Dominic Woolf, Stan Wullschleger, and Xiaohan Yang) identified a range of possibilities by which SSB might help reduce greenhouse gas concentrations and which might also contribute to environmental sustainability and adaptation. These include, among other possibilities, engineering plants to convert CO<jats:sub>2</jats:sub> produced by respiration into a stable carbonate, designing plants with an increased root-to-shoot ratio, and creating plants with the ability to self-fertilize. A number of serious ecological and societal challenges must, however, be confronted and resolved before any such application can be fully assessed, realized, and deployed.</jats:p>
dc.language.isoen
dc.publisherAmerican Association for the Advancement of Science (AAAS)
dc.relation.isversionof10.34133/2020/1016207
dc.rightsCreative Commons Attribution 4.0 International license
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.sourceBioDesign Research
dc.titleThe Role of Synthetic Biology in Atmospheric Greenhouse Gas Reduction: Prospects and Challenges
dc.typeArticle
dc.contributor.departmentSloan School of Management
dc.contributor.departmentMassachusetts Institute of Technology. Joint Program on the Science & Policy of Global Change
dc.contributor.departmentMassachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences
dc.relation.journalBioDesign Research
dc.eprint.versionFinal published version
dc.type.urihttp://purl.org/eprint/type/JournalArticle
eprint.statushttp://purl.org/eprint/status/PeerReviewed
dc.date.updated2021-07-01T14:55:48Z
dspace.orderedauthorsDeLisi, C; Patrinos, A; MacCracken, M; Drell, D; Annas, G; Arkin, A; Church, G; Cook-Deegan, R; Jacoby, H; Lidstrom, M; Melillo, J; Milo, R; Paustian, K; Reilly, J; Roberts, RJ; Segrè, D; Solomon, S; Woolf, D; Wullschleger, SD; Yang, X
dspace.date.submission2021-07-01T14:55:49Z
mit.journal.volume2020
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Needed


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record