Show simple item record

dc.contributor.authorBorodin, Alexei
dc.contributor.authorGorin, Vadim
dc.date.accessioned2021-10-27T19:52:23Z
dc.date.available2021-10-27T19:52:23Z
dc.date.issued2019
dc.identifier.urihttps://hdl.handle.net/1721.1/133366
dc.description.abstract© Institute of Mathematical Statistics, 2019. A stochastic telegraph equation is defined by adding a random inhomogeneity to the classical (second-order linear hyperbolic) telegraph differential equation. The inhomogeneities we consider are proportional to the twodimensional white noise, and solutions to our equation are two-dimensional random Gaussian fields. We show that such fields arise naturally as asymptotic fluctuations of the height function in a certain limit regime of the stochastic six-vertex model in a quadrant. The corresponding law of large numbers-the limit shape of the height function-is described by the (deterministic) homogeneous telegraph equation.
dc.language.isoen
dc.publisherInstitute of Mathematical Statistics
dc.relation.isversionof10.1214/19-AOP1356
dc.rightsCreative Commons Attribution-Noncommercial-Share Alike
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.sourcearXiv
dc.titleA stochastic telegraph equation from the six-vertex model
dc.typeArticle
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematics
dc.relation.journalThe Annals of Probability
dc.eprint.versionAuthor's final manuscript
dc.type.urihttp://purl.org/eprint/type/JournalArticle
eprint.statushttp://purl.org/eprint/status/PeerReviewed
dc.date.updated2021-05-17T18:25:56Z
dspace.orderedauthorsBorodin, A; Gorin, V
dspace.date.submission2021-05-17T18:25:57Z
mit.journal.volume47
mit.journal.issue6
mit.licenseOPEN_ACCESS_POLICY
mit.metadata.statusAuthority Work and Publication Information Needed


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record