MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Strong solutions for the Alber equation and stability of unidirectional wave spectra

Author(s)
G Athanassoulis, Agissilaos; A Athanassoulis, Gerassimos; Ptashnyk, Mariya; Sapsis, Themistoklis
Thumbnail
DownloadPublished version (2.318Mb)
Publisher Policy

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
© American Institute of Mathematical Sciences. The Alber equation is a moment equation for the nonlinear Schrodinger equation, formally used in ocean engineering to investigate the stability of stationary and homogeneous sea states in terms of their power spectra. In this work we present the first well-posedness theory for the Alber equation with the help of an appropriate equivalent reformulation. Moreover, we show linear Landau damping in the sense that, under a stability condition on the homogeneous background, any inhomogeneities disperse and decay in time. The proof exploits novel L2 space-time estimates to control the inhomogeneity and our result applies to any regular initial data (without a mean-zero restriction). Finally, the sufficient condition for stability is resolved, and the physical implications for ocean waves are discussed. Using a standard reference dataset (the \North Atlantic Scatter Diagram") it is found that the vast majority of sea states are stable, but modulationally unstable sea states do appear, with likelihood O(1/1000); these would be the prime breeding ground for rogue waves.
Date issued
2020
URI
https://hdl.handle.net/1721.1/133414
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Journal
Kinetic & Related Models
Publisher
American Institute of Mathematical Sciences (AIMS)

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.