MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Magnetization-governed magnetoresistance anisotropy in the topological semimetal CeBi

Author(s)
Lyu, Yang-Yang; Han, Fei; Xiao, Zhi-Li; Xu, Jing; Wang, Yong-Lei; Wang, Hua-Bing; Bao, Jin-Ke; Chung, Duck Young; Li, Mingda; Martin, Ivar; Welp, Ulrich; Kanatzidis, Mercouri G; Kwok, Wai-Kwong; ... Show more Show less
Thumbnail
DownloadPublished version (827.9Kb)
Publisher Policy

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
© 2019 American Physical Society. Magnetic topological semimetals, the latest member of topological quantum materials, are attracting extensive attention as they may lead to topologically driven spintronics. Currently, magnetotransport investigations on these materials are focused on the anomalous Hall effect. Here, we report on the magnetoresistance anisotropy of topological semimetal CeBi, which has tunable magnetic structures arising from localized Ce 4f electrons and exhibits both negative and positive magnetoresistances, depending on the temperature. We found that the angle dependence of the negative magnetoresistance, regardless of its large variation with the magnitude of the magnetic field and with temperature, is solely dictated by the field-induced magnetization that is orientated along a primary crystalline axis and flops under the influence of a rotating magnetic field. The results reveal the strong interaction between conduction electrons and magnetization in CeBi. They also indicate that magnetoresistance anisotropy can be used to uncover the magnetic behavior and the correlation between transport phenomena and magnetism in magnetic topological semimetals.
Date issued
2019
URI
https://hdl.handle.net/1721.1/133419
Department
Massachusetts Institute of Technology. Department of Nuclear Science and Engineering
Journal
Physical Review B
Publisher
American Physical Society (APS)

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.