Charged-particle angular correlations in XeXe collisions at √ s N N = 5.44 TeV
Author(s)
The CMS Collaboration
DownloadPublished version (1.402Mb)
Publisher with Creative Commons License
Publisher with Creative Commons License
Creative Commons Attribution
Terms of use
Metadata
Show full item recordAbstract
©2019 CERN, for the CMS Collaboration. Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI. Funded by SCOAP 3 . Azimuthal correlations of charged particles in xenon-xenon collisions at a center-of-mass energy per nucleon pair of sNN=5.44 TeV are studied. The data were collected by the CMS experiment at the LHC with a total integrated luminosity of 3.42μb-1. The collective motion of the system formed in the collision is parametrized by a Fourier expansion of the azimuthal particle density distribution. The azimuthal anisotropy coefficients v2, v3, and v4 are obtained by the scalar-product, two-particle correlation, and multiparticle correlation methods. Within a hydrodynamic picture, these methods have different sensitivities to noncollective and fluctuation effects. The dependence of the Fourier coefficients on the size of the colliding system is explored by comparing the xenon-xenon results with equivalent lead-lead data. Model calculations that include initial-state fluctuation effects are also compared to the experimental results. The observed angular correlations provide new constraints on the hydrodynamic description of heavy ion collisions.
Date issued
2019Department
Massachusetts Institute of Technology. Department of Physics; Massachusetts Institute of Technology. Laboratory for Nuclear ScienceJournal
Physical Review C
Publisher
American Physical Society (APS)