Show simple item record

dc.contributor.authorXing, QR
dc.contributor.authorEl Farran, CA
dc.contributor.authorGautam, P
dc.contributor.authorChuah, YS
dc.contributor.authorWarrier, T
dc.contributor.authorToh, CXD
dc.contributor.authorKang, NY
dc.contributor.authorSugii, S
dc.contributor.authorChang, YT
dc.contributor.authorXu, J
dc.contributor.authorCollins, JJ
dc.contributor.authorDaley, GQ
dc.contributor.authorLi, H
dc.contributor.authorZhang, LF
dc.contributor.authorLoh, YH
dc.date.accessioned2021-10-27T19:53:09Z
dc.date.available2021-10-27T19:53:09Z
dc.date.issued2020
dc.identifier.urihttps://hdl.handle.net/1721.1/133493
dc.description.abstractCellular reprogramming suffers from low efficiency especially for the human cells. To deconstruct the heterogeneity and unravel the mechanisms for successful reprogramming, we adopted single-cell RNA sequencing (scRNA-Seq) and single-cell assay for transposase-accessible chromatin (scATAC-Seq) to profile reprogramming cells across various time points. Our analysis revealed that reprogramming cells proceed in an asynchronous trajectory and diversify into heterogeneous subpopulations. We identified fluorescent probes and surface markers to enrich for the early reprogrammed human cells. Furthermore, combinatory usage of the surface markers enabled the fine segregation of the early-intermediate cells with diverse reprogramming propensities. scATAC-Seq analysis further uncovered the genomic partitions and transcription factors responsible for the regulatory phasing of reprogramming process. Binary choice between a FOSL1 and a TEAD4-centric regulatory network determines the outcome of a successful reprogramming. Together, our study illuminates the multitude of diverse routes transversed by individual reprogramming cells and presents an integrative roadmap for identifying the mechanistic part list of the reprogramming machinery.en_US
dc.language.isoen
dc.publisherAmerican Association for the Advancement of Science (AAAS)en_US
dc.relation.isversionof10.1126/SCIADV.ABA1190en_US
dc.rightsCreative Commons Attribution NonCommercial License 4.0en_US
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/en_US
dc.sourceScience Advancesen_US
dc.titleDiversification of reprogramming trajectories revealed by parallel single-cell transcriptome and chromatin accessibility sequencingen_US
dc.typeArticleen_US
dc.contributor.departmentMassachusetts Institute of Technology. Institute for Medical Engineering & Science
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biological Engineering
dc.contributor.departmentMassachusetts Institute of Technology. Synthetic Biology Center
dc.relation.journalScience Advancesen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2021-08-25T18:15:03Z
dspace.orderedauthorsXing, QR; El Farran, CA; Gautam, P; Chuah, YS; Warrier, T; Toh, CXD; Kang, NY; Sugii, S; Chang, YT; Xu, J; Collins, JJ; Daley, GQ; Li, H; Zhang, LF; Loh, YHen_US
dspace.date.submission2021-08-25T18:15:06Z
mit.journal.volume6en_US
mit.journal.issue37en_US
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Needed


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record