MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Spectral Alignment of Graphs

Author(s)
Feizi, Soheil; Quon, Gerald; Medard, Muriel; Kellis, Manolis; Jadbabaie, Ali
Thumbnail
DownloadSubmitted version (588.3Kb)
Open Access Policy

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
© 2013 IEEE. Graph alignment refers to the problem of finding a bijective mapping across vertices of two graphs such that, if two nodes are connected in the first graph, their images are connected in the second graph. This problem arises in many fields, such as computational biology, social sciences, and computer vision and is often cast as a quadratic assignment problem (QAP). Most standard graph alignment methods consider an optimization that maximizes the number of matches between the two graphs, ignoring the effect of mismatches. We propose a generalized graph alignment formulation that considers both matches and mismatches in a standard QAP formulation. This modification can have a major impact in aligning graphs with different sizes and heterogeneous edge densities. Moreover, we propose two methods for solving the generalized graph alignment problem based on spectral decomposition of matrices. We compare the performance of proposed methods with some existing graph alignment algorithms including Natalie2, GHOST, IsoRank, NetAlign, Klau's approach as well as a semidefinite programming-based method over various synthetic and real graph models. Our proposed method based on simultaneous alignment of multiple eigenvectors leads to consistently good performance in different graph models. In particular, in the alignment of regular graph structures, which is one of the most difficult graph alignment cases, our proposed method significantly outperforms other methods.
Date issued
2019
URI
https://hdl.handle.net/1721.1/133666
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science; Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory; Massachusetts Institute of Technology. Department of Civil and Environmental Engineering; Massachusetts Institute of Technology. Institute for Data, Systems, and Society; Massachusetts Institute of Technology. Laboratory for Information and Decision Systems
Journal
IEEE Transactions on Network Science and Engineering
Publisher
Institute of Electrical and Electronics Engineers (IEEE)

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.