MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A lower bound on the queueing delay in resource constrained load balancing

Author(s)
Gamarnik, David; Tsitsiklis, John N; Zubeldia, Martin
Thumbnail
DownloadSubmitted version (357.7Kb)
Open Access Policy

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
© 2020 Institute of Mathematical Statistics. All rights reserved. We consider the following distributed service model: Jobs with unit mean, general distribution, and independent processing times arrive as a renewal process of rate λn, with 0 < λ < 1, and are immediately dispatched to one of several queues associated with n identical servers with unit processing rate. We assume that the dispatching decisions are made by a central dispatcher endowed with a finite memory, and with the ability to exchange messages with the servers. We study the fundamental resource requirements (memory bits and message exchange rate), in order to drive the expected queueing delay in steadystate of a typical job to zero, as n increases. We develop a novel approach to show that, within a certain broad class of "symmetric" policies, every dispatching policy with a message rate of the order of n, and with a memory of the order of log n bits, results in an expected queueing delay which is bounded away from zero, uniformly as n→∞. This complements existing results which show that, in the absence of such limitations on the memory or the message rate, there exist policies with vanishing queueing delay (at least with Poisson arrivals and exponential service times).
Date issued
2020
URI
https://hdl.handle.net/1721.1/133724
Department
Sloan School of Management; Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Journal
Annals of Applied Probability
Publisher
Institute of Mathematical Statistics

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.