MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Predicting human health from biofluid-based metabolomics using machine learning

Author(s)
Evans, Ethan D; Duvallet, Claire; Chu, Nathaniel D; Oberst, Michael K; Murphy, Michael A; Rockafellow, Isaac; Sontag, David; Alm, Eric J; ... Show more Show less
Thumbnail
DownloadPublished version (4.753Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution 4.0 International license https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
© 2020, The Author(s). Biofluid-based metabolomics has the potential to provide highly accurate, minimally invasive diagnostics. Metabolomics studies using mass spectrometry typically reduce the high-dimensional data to only a small number of statistically significant features, that are often chemically identified—where each feature corresponds to a mass-to-charge ratio, retention time, and intensity. This practice may remove a substantial amount of predictive signal. To test the utility of the complete feature set, we train machine learning models for health state-prediction in 35 human metabolomics studies, representing 148 individual data sets. Models trained with all features outperform those using only significant features and frequently provide high predictive performance across nine health state categories, despite disparate experimental and disease contexts. Using only non-significant features it is still often possible to train models and achieve high predictive performance, suggesting useful predictive signal. This work highlights the potential for health state diagnostics using all metabolomics features with data-driven analysis.
Date issued
2020
URI
https://hdl.handle.net/1721.1/133758
Department
Massachusetts Institute of Technology. Department of Biological Engineering; Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory; Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Journal
Scientific Reports
Publisher
Springer Science and Business Media LLC

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.