MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Stochastic Heat Equation Limit of a (2 + 1)d Growth Model

Author(s)
Borodin, Alexei; Corwin, Ivan; Toninelli, Fabio Lucio
Thumbnail
DownloadSubmitted version (546.6Kb)
Open Access Policy

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
© 2016, Springer-Verlag Berlin Heidelberg. We determine a q→ 1 limit of the two-dimensional q-Whittaker driven particle system on the torus studied previously in Corwin and Toninelli (Electron. Commun. Probab. 21(44):1–12, 2016). This has an interpretation as a (2 + 1)-dimensional stochastic interface growth model, which is believed to belong to the so-called anisotropic Kardar–Parisi–Zhang (KPZ) class. This limit falls into a general class of two-dimensional systems of driven linear SDEs which have stationary measures on gradients. Taking the number of particles to infinity we demonstrate Gaussian free field type fluctuations for the stationary measure. Considering the temporal evolution of the stationary measure, we determine that along characteristics, correlations are asymptotically given by those of the (2 + 1)-dimensional additive stochastic heat equation. This confirms (for this model) the prediction that the non-linearity for the anisotropic KPZ equation in (2 + 1)-dimension is irrelevant.
Date issued
2017
URI
https://hdl.handle.net/1721.1/133905
Department
Massachusetts Institute of Technology. Department of Mathematics
Journal
Communications in Mathematical Physics
Publisher
Springer Nature
Citation
Borodin, Alexei, Ivan Corwin, and Fabio Lucio Toninelli. "Stochastic Heat Equation Limit of a (2+1)D Growth Model." Communications in Mathematical Physics 350 3 (2017): 957-84.
Version: Original manuscript

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.