MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Engineering Periodic shRNA for Enhanced Silencing Efficacy

Author(s)
Wu, Connie; Shopsowitz, Kevin E; Hammond, Paula T
Thumbnail
DownloadPublished version (1.344Mb)
Terms of use
Creative Commons Attribution-NonCommercial-NoDerivs License http://creativecommons.org/licenses/by-nc-nd/4.0/
Metadata
Show full item record
Abstract
RNA interference (RNAi) provides a versatile therapeutic approach via silencing of specific genes, particularly undruggable targets in cancer and other diseases. However, challenges in the delivery of small interfering RNA (siRNA) have hampered clinical translation. Polymeric or periodic short hairpin RNAs (p-shRNAs) - synthesized by enzymatic amplification of circular DNA - are a recent development that can potentially address these delivery barriers by showing improved stability and complexation to enable nanoparticle packaging. Here, we modify these biomacromolecules via structural and sequence engineering coupled with selective enzymatic digestion to generate an open-ended p-shRNA (op-shRNA) that is cleaved over ten times more efficiently to yield siRNA. The op-shRNA induces considerably greater gene silencing than p-shRNA in multiple cancer cell lines up to 9 days. Furthermore, its high valency and flexibility dramatically improve complexation with a low molecular weight polycation compared to monomeric siRNA. Thus, op-shRNA provides an RNAi platform that can potentially be packaged and efficiently delivered to disease sites with higher therapeutic efficacy.
Date issued
2016
URI
https://hdl.handle.net/1721.1/133917
Department
Koch Institute for Integrative Cancer Research at MIT; Massachusetts Institute of Technology. Department of Chemical Engineering; Massachusetts Institute of Technology. Institute for Soldier Nanotechnologies
Journal
Molecular Therapy
Publisher
Elsevier BV

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.