MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Telomerase expression marks transitional growth-associated skeletal progenitor/stem cells: mTert marks skeletal progenitor/stem cells

Author(s)
Carlone, Diana L; Riba-Wolman, Rebecca D; Deary, Luke T; Tovaglieri, Alessio; Jiang, Lijie; Ambruzs, Dana M; Mead, Benjamin E; Shah, Manasvi S; Lengner, Christopher J; Jaenisch, Rudolf; Breault, David T; ... Show more Show less
Thumbnail
DownloadPublished version (10.29Mb)
Publisher Policy

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Creative Commons Attribution-NonCommercial-NoDerivs License http://creativecommons.org/licenses/by-nc-nd/4.0/
Metadata
Show full item record
Abstract
©2021 The Authors. Stem Cells published by Wiley Periodicals LLC on behalf of AlphaMed Press. Skeletal progenitor/stem cells (SSCs) play a critical role in postnatal bone growth and maintenance. Telomerase (Tert) activity prevents cellular senescence and is required for maintenance of stem cells in self-renewing tissues. Here we investigated the role of mTert-expressing cells in postnatal mouse long bone and found that mTert expression is enriched at the time of adolescent bone growth. mTert-GFP+ cells were identified in regions known to house SSCs, including the metaphyseal stroma, growth plate, and the bone marrow. We also show that mTert-expressing cells are a distinct SSC population with enriched colony-forming capacity and contribute to multiple mesenchymal lineages, in vitro. In contrast, in vivo lineage-tracing studies identified mTert+ cells as osteochondral progenitors and contribute to the bone-forming cell pool during endochondral bone growth with a subset persisting into adulthood. Taken together, our results show that mTert expression is temporally regulated and marks SSCs during a discrete phase of transitional growth between rapid bone growth and maintenance.
Date issued
2021
URI
https://hdl.handle.net/1721.1/133982
Department
Massachusetts Institute of Technology. Department of Biology; Whitehead Institute for Biomedical Research
Journal
Stem Cells
Publisher
Wiley

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.