MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

High‐speed autonomous obstacle avoidance with pushbroom stereo

Author(s)
Barry, Andrew J; Florence, Peter R; Tedrake, Russ
Thumbnail
DownloadAccepted version (24.11Mb)
Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
© 2017 Wiley Periodicals, Inc. We present the design and implementation of a small autonomous unmanned aerial vehicle capable of high-speed flight through complex natural environments. Using only onboard GPS-denied sensing and computation, we perform obstacle detection, planning, and feedback control in real time. We present a novel integrated approach to perception and control using pushbroom stereo, which exploits forward motion to enable efficient obstacle detection and avoidance using lightweight processors on an unmanned aerial vehicle. Our use of model-based planning and control techniques allows us to track precise trajectories that avoid obstacles identified by the vision system. We demonstrate a complete working system detecting obstacles at 120 Hz and avoiding trees at up to 14 m/s (31 MPH). To the best of our knowledge, this is the fastest lightweight aerial vehicle to perform collision avoidance using three-dimensional geometric information.
Date issued
2018
URI
https://hdl.handle.net/1721.1/133998
Department
Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory
Journal
Journal of Field Robotics
Publisher
Wiley

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.