Show simple item record

dc.contributor.authorGuo, Kai
dc.contributor.authorYang, Zhenze
dc.contributor.authorYu, Chi-Hua
dc.contributor.authorBuehler, Markus J
dc.date.accessioned2021-10-27T19:57:35Z
dc.date.available2021-10-27T19:57:35Z
dc.date.issued2021
dc.identifier.urihttps://hdl.handle.net/1721.1/134002
dc.description.abstract<p>This review revisits the state of the art of research efforts on the design of mechanical materials using machine learning.</p>
dc.language.isoen
dc.publisherRoyal Society of Chemistry (RSC)
dc.relation.isversionof10.1039/d0mh01451f
dc.rightsCreative Commons Attribution Noncommercial 3.0 unported license
dc.rights.urihttps://creativecommons.org/licenses/by-nc/3.0/
dc.sourceRoyal Society of Chemistry (RSC)
dc.titleArtificial Intelligence and Machine Learning in Design of Mechanical Materials
dc.typeArticle
dc.contributor.departmentMassachusetts Institute of Technology. Laboratory for Atomistic and Molecular Mechanics
dc.contributor.departmentMassachusetts Institute of Technology. Department of Civil and Environmental Engineering
dc.contributor.departmentMassachusetts Institute of Technology. Department of Materials Science and Engineering
dc.contributor.departmentMassachusetts Institute of Technology. Center for Computational Science and Engineering
dc.relation.journalMaterials Horizons
dc.eprint.versionFinal published version
dc.type.urihttp://purl.org/eprint/type/JournalArticle
eprint.statushttp://purl.org/eprint/status/PeerReviewed
dc.date.updated2021-08-04T14:00:33Z
dspace.orderedauthorsGuo, K; Yang, Z; Yu, C-H; Buehler, MJ
dspace.date.submission2021-08-04T14:00:37Z
mit.journal.volume8
mit.journal.issue4
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Needed


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record