Show simple item record

dc.contributor.authorLee, Charles MC
dc.contributor.authorSo, Eric C
dc.contributor.authorWang, Charles CY
dc.date.accessioned2021-10-27T19:57:36Z
dc.date.available2021-10-27T19:57:36Z
dc.date.issued2021
dc.identifier.urihttps://hdl.handle.net/1721.1/134008
dc.description.abstract<jats:title>Abstract</jats:title> <jats:p>We introduce a parsimonious framework for choosing among alternative expected-return proxies (ERPs) when estimating treatment effects. By comparing ERPs’ measurement error variances in the cross-section and in the time series, we provide new evidence on the relative performance of firm-level ERPs nominated by recent studies. Generally, “implied-costs-of-capital” metrics perform best in the time series, whereas “characteristic-based” proxies perform best in the cross-section. Factor-based ERPs, even the latest renditions, perform poorly. We revisit four prior studies that use ex ante ERPs and illustrate how this framework can potentially alter either the sign or the magnitude of prior inferences.</jats:p>
dc.language.isoen
dc.publisherOxford University Press (OUP)
dc.relation.isversionof10.1093/RFS/HHAA066
dc.rightsCreative Commons Attribution-Noncommercial-Share Alike
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.sourceSSRN
dc.titleEvaluating Firm-Level Expected-Return Proxies: Implications for Estimating Treatment Effects
dc.typeArticle
dc.contributor.departmentSloan School of Management
dc.relation.journalReview of Financial Studies
dc.eprint.versionOriginal manuscript
dc.type.urihttp://purl.org/eprint/type/JournalArticle
eprint.statushttp://purl.org/eprint/status/NonPeerReviewed
dc.date.updated2021-02-24T12:59:14Z
dspace.orderedauthorsLee, CMC; So, EC; Wang, CCY
dspace.date.submission2021-02-24T13:00:46Z
mit.journal.volume34
mit.journal.issue4
mit.licenseOPEN_ACCESS_POLICY
mit.metadata.statusAuthority Work and Publication Information Needed


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record