MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Functional analysis of CX3CR1 in human induced pluripotent stem (iPS) cell‐derived microglia‐like cells

Author(s)
Murai, Nobuhito; Mitalipova, Maisam; Jaenisch, Rudolf
Thumbnail
DownloadAccepted version (1.485Mb)
Open Access Policy

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
© 2020 Federation of European Neuroscience Societies and John Wiley & Sons Ltd Microglia are the primary immune cells of the central nervous system and crucial to proper development and maintenance of the brain. Microglia have been recognized to be associated with neurodegenerative diseases and neuroinflammatory disorders. CX3C chemokine receptor 1 (CX3CR1), which is specifically expressed in microglia, regulates microglia homeostatic functions such as microglial activation and is downregulated in aged brain and disease-associated microglia in rodents, yet its role in human microglia is not fully understood. In this study, we investigated the function of CX3CR1 in human microglia using human induced pluripotent stem (iPS) cell-derived microglia-like cells. Human iPS cell-derived microglia-like cells expressed microglial markers and showed an activated state and phagocytic activity. Using CRISPR/Cas9 genome editing, we deleted CX3CR1 in human iPS cells and found increased inflammatory responses and phagocytic activity in mutant as compared to wild-type microglia-like cells. In addition, the CX3C chemokine ligand 1 (CX3CL1, a ligand for CX3CR1) significantly decreased the upregulation of IL-6 by lipopolysaccharide stimulation in human iPS cell-derived microglia-like cells. These results suggest that CX3CR1 in human microglia may contribute to microglial homeostasis by regulating inflammatory response and phagocytosis.
Date issued
2020
URI
https://hdl.handle.net/1721.1/134009
Department
Whitehead Institute for Biomedical Research; Massachusetts Institute of Technology. Department of Biology
Journal
European Journal of Neuroscience
Publisher
Wiley

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.