MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Molecular DFT+U: A Transferable, Low-Cost Approach to Eliminate Delocalization Error

Author(s)
Bajaj, Akash; Kulik, Heather J
Thumbnail
DownloadSubmitted version (3.238Mb)
Open Access Policy

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
While density functional theory (DFT) is widely applied for its combination of cost and accuracy, corrections (e.g., DFT+U) that improve it are often needed to tackle correlated transition-metal chemistry. In principle, the functional form of DFT+U, consisting of a set of localized atomic orbitals (AO) and a quadratic energy penalty for deviation from integer occupations of those AOs, enables the recovery of the exact conditions of piecewise linearity and the derivative discontinuity. Nevertheless, for practical transition-metal complexes, where both atomic states and ligand orbitals participate in bonding, standard DFT+U can fail to eliminate delocalization error (DE). Here, we show that by introducing an alternative valence-state (i.e., molecular orbital or MO) basis to the DFT+U approach, we recover exact conditions in cases where standard DFT+U corrections have no error-reducing effect. This MO-based DFT+U also eliminates DE where standard AO-based DFT+U is already successful. We demonstrate the transferability of our approach on a range of ligand field strengths (i.e., from H_2O to CO), electron configurations (i.e., from Sc to Fe to Zn), and spin states (i.e., low-spin and high-spin) in representative transition-metal complexes.
Date issued
2021
URI
https://hdl.handle.net/1721.1/134010
Department
Massachusetts Institute of Technology. Department of Chemical Engineering; Massachusetts Institute of Technology. Department of Materials Science and Engineering
Journal
Journal of Physical Chemistry Letters
Publisher
American Chemical Society (ACS)

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.