MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Accurate Heuristic Terrain Prediction in Powered Lower-Limb Prostheses Using Onboard Sensors

Author(s)
Stolyarov, Roman Mark; Carney, Matthew E; Herr, Hugh
Thumbnail
DownloadSubmitted version (3.333Mb)
Open Access Policy

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
OBJECTIVE: This study describes the development and offline validation of a heuristic algorithm for accurate prediction of ground terrain in a lower limb prosthesis. This method is based on inference of the ground terrain geometry using estimation of prosthetic limb kinematics during gait with a single integrated inertial measurement unit. METHODS: We asked five subjects with below-knee amputations to traverse level ground, stairs, and ramps using a high-range-of-motion powered prosthesis while internal sensor data were remotely logged. We used these data to develop three terrain prediction algorithms. The first two employed state-of-the-art machine learning approaches, while the third was a directly tuned heuristic using thresholds on estimated prosthetic ankle joint translations and ground slope. We compared the performance of these algorithms using resubstitution error for the machine learning algorithms and overall error for the heuristic algorithm. RESULTS: Our optimal machine learning algorithm attained a resubstitution error of 3.4% using 45 features, while our heuristic method attained an overall prediction error of 2.8% using only 5 features derived from estimation of ground slope and horizontal and vertical ankle joint displacement. Compared with pattern recognition, the heuristic performed better on each individual subject, and across both level and non-level strides. CONCLUSION AND SIGNIFICANCE: These results demonstrate a method for heuristic prediction of ground terrain in a powered prosthesis. The method is more accurate, more interpretable, and less computationally expensive than machine learning methods considered state-of-the-art for intent recognition, and relies only on integrated prosthesis sensors. Finally, the method provides intuitively tunable thresholds to improve performance for specific walking conditions.
Date issued
2021
URI
https://hdl.handle.net/1721.1/134015
Department
Massachusetts Institute of Technology. Center for Extreme Bionics
Journal
IEEE Transactions on Biomedical Engineering
Publisher
Institute of Electrical and Electronics Engineers (IEEE)

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.