Show simple item record

dc.contributor.authorBigoni, D
dc.contributor.authorChen, Y
dc.contributor.authorTrillos, N Garcia
dc.contributor.authorMarzouk, Y
dc.contributor.authorSanz-Alonso, D
dc.date.accessioned2021-10-27T19:57:44Z
dc.date.available2021-10-27T19:57:44Z
dc.date.issued2020
dc.identifier.urihttps://hdl.handle.net/1721.1/134038
dc.description.abstract© 2020 IOP Publishing Ltd. This paper suggests a framework for the learning of discretizations of expensive forward models in Bayesian inverse problems. The main idea is to incorporate the parameters governing the discretization as part of the unknown to be estimated within the Bayesian machinery. We numerically show that in a variety of inverse problems arising in mechanical engineering, signal processing and the geosciences, the observations contain useful information to guide the choice of discretization.
dc.language.isoen
dc.publisherIOP Publishing
dc.relation.isversionof10.1088/1361-6420/abb2fa
dc.rightsCreative Commons Attribution-Noncommercial-Share Alike
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.sourcearXiv
dc.titleData-Driven Forward Discretizations for Bayesian Inversion
dc.typeArticle
dc.contributor.departmentMassachusetts Institute of Technology. Department of Aeronautics and Astronautics
dc.contributor.departmentStatistics and Data Science Center (Massachusetts Institute of Technology)
dc.relation.journalInverse Problems
dc.eprint.versionOriginal manuscript
dc.type.urihttp://purl.org/eprint/type/JournalArticle
eprint.statushttp://purl.org/eprint/status/NonPeerReviewed
dc.date.updated2021-05-03T15:51:52Z
dspace.orderedauthorsBigoni, D; Chen, Y; Trillos, NG; Marzouk, Y; Sanz-Alonso, D
dspace.date.submission2021-05-03T15:51:53Z
mit.journal.volume36
mit.journal.issue10
mit.licenseOPEN_ACCESS_POLICY
mit.metadata.statusAuthority Work and Publication Information Needed


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record