Natural-mixing guided design of refractory high-entropy alloys with as-cast tensile ductility
Author(s)
Wei, Shaolou; Kim, Sang Jun; Kang, Jiyun; Zhang, Yong; Zhang, Yongjie; Furuhara, Tadashi; Park, Eun Soo; Tasan, Cemal Cem; ... Show more Show less
DownloadSubmitted version (4.680Mb)
Publisher Policy
Publisher Policy
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Terms of use
Metadata
Show full item recordAbstract
© 2020, The Author(s), under exclusive licence to Springer Nature Limited. Metallic alloys containing multiple principal alloying elements have created a growing interest in exploring the property limits of metals and understanding the underlying physical mechanisms. Refractory high-entropy alloys have drawn particular attention due to their high melting points and excellent softening resistance, which are the two key requirements for high-temperature applications. Their compositional space is immense even after considering cost and recyclability restrictions, providing abundant design opportunities. However, refractory high-entropy alloys often exhibit apparent brittleness and oxidation susceptibility, which remain important challenges for their processing and application. Here, utilizing natural-mixing characteristics among refractory elements, we designed a Ti38V15Nb23Hf24 refractory high-entropy alloy that exhibits >20% tensile ductility in the as-cast state, and physicochemical stability at high temperatures. Exploring the underlying deformation mechanisms across multiple length scales, we observe that a rare β′-phase plays an intriguing role in the mechanical response of this alloy. These results reveal the effectiveness of natural-mixing tendencies in expediting high-entropy alloy discovery.
Date issued
2020Department
Massachusetts Institute of Technology. Department of Materials Science and Engineering; MIT Materials Research LaboratoryJournal
Nature Materials
Publisher
Springer Science and Business Media LLC