Show simple item record

dc.contributor.authorGuillemin, Victor
dc.contributor.authorWang, Zuoqin
dc.date.accessioned2021-10-27T19:57:47Z
dc.date.available2021-10-27T19:57:47Z
dc.date.issued2021
dc.identifier.urihttps://hdl.handle.net/1721.1/134048
dc.description.abstract© 2020 Royal Dutch Mathematical Society (KWG) In this paper we will extend to non-abelian groups inverse spectral results, proved by us in an earlier paper (Guillemin and Wang, 2016), for compact abelian groups, i.e. tori. More precisely, Let G be a compact Lie group acting isometrically on a compact Riemannian manifold X. We will show that for the Schrödinger operator −ħ2Δ+V with V∈C∞(X)G, the potential function V is, in some interesting examples, determined by the G-equivariant spectrum. The key ingredient in this proof is a generalized Legendrian relation between the Lagrangian manifolds Graph(dV) and Graph(dF), where F is a spectral invariant defined on an open subset of the positive Weyl chamber.
dc.language.isoen
dc.publisherElsevier BV
dc.relation.isversionof10.1016/J.INDAG.2020.05.004
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivs License
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourcearXiv
dc.titleInverse spectral results for non-abelian group actions
dc.typeArticle
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematics
dc.relation.journalIndagationes Mathematicae
dc.eprint.versionOriginal manuscript
dc.type.urihttp://purl.org/eprint/type/JournalArticle
eprint.statushttp://purl.org/eprint/status/NonPeerReviewed
dc.date.updated2021-05-20T13:44:45Z
dspace.orderedauthorsGuillemin, V; Wang, Z
dspace.date.submission2021-05-20T13:44:46Z
mit.journal.volume32
mit.journal.issue1
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Needed


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record