dc.contributor.author | Guillemin, Victor | |
dc.contributor.author | Wang, Zuoqin | |
dc.date.accessioned | 2021-10-27T19:57:47Z | |
dc.date.available | 2021-10-27T19:57:47Z | |
dc.date.issued | 2021 | |
dc.identifier.uri | https://hdl.handle.net/1721.1/134048 | |
dc.description.abstract | © 2020 Royal Dutch Mathematical Society (KWG) In this paper we will extend to non-abelian groups inverse spectral results, proved by us in an earlier paper (Guillemin and Wang, 2016), for compact abelian groups, i.e. tori. More precisely, Let G be a compact Lie group acting isometrically on a compact Riemannian manifold X. We will show that for the Schrödinger operator −ħ2Δ+V with V∈C∞(X)G, the potential function V is, in some interesting examples, determined by the G-equivariant spectrum. The key ingredient in this proof is a generalized Legendrian relation between the Lagrangian manifolds Graph(dV) and Graph(dF), where F is a spectral invariant defined on an open subset of the positive Weyl chamber. | |
dc.language.iso | en | |
dc.publisher | Elsevier BV | |
dc.relation.isversionof | 10.1016/J.INDAG.2020.05.004 | |
dc.rights | Creative Commons Attribution-NonCommercial-NoDerivs License | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.source | arXiv | |
dc.title | Inverse spectral results for non-abelian group actions | |
dc.type | Article | |
dc.contributor.department | Massachusetts Institute of Technology. Department of Mathematics | |
dc.relation.journal | Indagationes Mathematicae | |
dc.eprint.version | Original manuscript | |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
eprint.status | http://purl.org/eprint/status/NonPeerReviewed | |
dc.date.updated | 2021-05-20T13:44:45Z | |
dspace.orderedauthors | Guillemin, V; Wang, Z | |
dspace.date.submission | 2021-05-20T13:44:46Z | |
mit.journal.volume | 32 | |
mit.journal.issue | 1 | |
mit.license | PUBLISHER_CC | |
mit.metadata.status | Authority Work and Publication Information Needed | |