MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Match: differentiable material graphs for procedural material capture

Author(s)
Shi, Liang; Li, Beichen; Hašan, Miloš; Sunkavalli, Kalyan; Boubekeur, Tamy; Mech, Radomir; Matusik, Wojciech; ... Show more Show less
Thumbnail
DownloadPublished version (24.40Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution 4.0 International license https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
© 2020 Owner/Author. We present MATch, a method to automatically convert photographs of material samples into production-grade procedural material models. At the core of MATch is a new library DiffMat that provides differentiable building blocks for constructing procedural materials, and automatic translation of large-scale procedural models, with hundreds to thousands of node parameters, into differentiable node graphs. Combining these translated node graphs with a rendering layer yields an end-to-end differentiable pipeline that maps node graph parameters to rendered images. This facilitates the use of gradient-based optimization to estimate the parameters such that the resulting material, when rendered, matches the target image appearance, as quantified by a style transfer loss. In addition, we propose a deep neural feature-based graph selection and parameter initialization method that efficiently scales to a large number of procedural graphs. We evaluate our method on both rendered synthetic materials and real materials captured as flash photographs. We demonstrate that MATch can reconstruct more accurate, general, and complex procedural materials compared to the state-of-the-art. Moreover, by producing a procedural output, we unlock capabilities such as constructing arbitrary-resolution material maps and parametrically editing the material appearance.
Date issued
2020
URI
https://hdl.handle.net/1721.1/134067
Department
Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory
Journal
ACM Transactions on Graphics
Publisher
Association for Computing Machinery (ACM)

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.