Show simple item record

dc.contributor.authorAllen, Kelsey R
dc.contributor.authorSmith, Kevin A
dc.contributor.authorTenenbaum, Joshua B
dc.date.accessioned2021-10-27T19:57:55Z
dc.date.available2021-10-27T19:57:55Z
dc.date.issued2020
dc.identifier.urihttps://hdl.handle.net/1721.1/134068
dc.description.abstract© 2020 National Academy of Sciences. All rights reserved. Many animals, and an increasing number of artificial agents, display sophisticated capabilities to perceive and manipulate objects. But human beings remain distinctive in their capacity for flexible, creative tool use-using objects in new ways to act on the world, achieve a goal, or solve a problem. To study this type of general physical problem solving, we introduce the Virtual Tools game. In this game, people solve a large range of challenging physical puzzles in just a handful of attempts. We propose that the flexibility of human physical problem solving rests on an ability to imagine the effects of hypothesized actions, while the efficiency of human search arises from rich action priors which are updated via observations of the world. We instantiate these components in the "sample, simulate, update" (SSUP) model and show that it captures human performance across 30 levels of the Virtual Tools game. More broadly, this model provides a mechanism for explaining how people condense general physical knowledge into actionable, task-specific plans to achieve flexible and efficient physical problem solving.
dc.language.isoen
dc.publisherProceedings of the National Academy of Sciences
dc.relation.isversionof10.1073/pnas.1912341117
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
dc.sourcePNAS
dc.titleRapid trial-and-error learning with simulation supports flexible tool use and physical reasoning
dc.typeArticle
dc.contributor.departmentMassachusetts Institute of Technology. Department of Brain and Cognitive Sciences
dc.contributor.departmentCenter for Brains, Minds, and Machines
dc.relation.journalProceedings of the National Academy of Sciences of the United States of America
dc.eprint.versionFinal published version
dc.type.urihttp://purl.org/eprint/type/JournalArticle
eprint.statushttp://purl.org/eprint/status/PeerReviewed
dc.date.updated2021-03-18T14:56:41Z
dspace.orderedauthorsAllen, KR; Smith, KA; Tenenbaum, JB
dspace.date.submission2021-03-18T14:56:42Z
mit.journal.volume117
mit.journal.issue47
mit.licensePUBLISHER_POLICY
mit.metadata.statusAuthority Work and Publication Information Needed


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record