MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Hard for humans, hard for machines: predicting readmission after psychiatric hospitalization using narrative notes

Author(s)
Boag, William; Kovaleva, Olga; McCoy, Thomas H; Rumshisky, Anna; Szolovits, Peter; Perlis, Roy H; ... Show more Show less
Thumbnail
DownloadPublished version (505.1Kb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution 4.0 International license https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
© 2021, The Author(s). Machine learning has been suggested as a means of identifying individuals at greatest risk for hospital readmission, including psychiatric readmission. We sought to compare the performance of predictive models that use interpretable representations derived via topic modeling to the performance of human experts and nonexperts. We examined all 5076 admissions to a general psychiatry inpatient unit between 2009 and 2016 using electronic health records. We developed multiple models to predict 180-day readmission for these admissions based on features derived from narrative discharge summaries, augmented by baseline sociodemographic and clinical features. We developed models using a training set comprising 70% of the cohort and evaluated on the remaining 30%. Baseline models using demographic features for prediction achieved an area under the curve (AUC) of 0.675 [95% CI 0.674–0.676] on an independent testing set, while language-based models also incorporating bag-of-words features, discharge summaries topics identified by Latent Dirichlet allocation (LDA), and prior psychiatric admissions achieved AUC of 0.726 [95% CI 0.725–0.727]. To characterize the difficulty of the task, we also compared the performance of these classifiers to both expert and nonexpert human raters, with and without feedback, on a subset of 75 test cases. These models outperformed humans on average, including predictions by experienced psychiatrists. Typical note tokens or topics associated with readmission risk were related to pregnancy/postpartum state, family relationships, and psychosis.
Date issued
2021
URI
https://hdl.handle.net/1721.1/134104
Journal
Translational Psychiatry
Publisher
Springer Science and Business Media LLC

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.