MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Continuous Embedded Droplet Printing in Yield‐Stress Fluids for Pharmaceutical Drug Particle Synthesis

Author(s)
Nelson, Arif Z; Xie, Jiaxun; Khan, Saif A; Doyle, Patrick S
Thumbnail
DownloadPublished version (2.359Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution NonCommercial License 4.0 https://creativecommons.org/licenses/by-nc/4.0/
Metadata
Show full item record
Abstract
© 2021 The Authors. Advanced Materials Technologies published by Wiley-VCH GmbH Embedded droplet printing is a recent mode of generating and processing droplets within yield-stress fluids. This technique has shown promise for performing sensitive processes like pharmaceutical crystallization, as well as chemical synthesis and biological experimentation due to the unique ability to process droplets that are quiescently suspended. Despite improving on conventional microfluidic technologies in numerous ways, current embedded droplet printing methods are limited to batch processes, severely hampering their overall utility. A new platform that enables continuous production of embedded droplets is presented and characterized. This platform expands the capabilities of embedded droplet printing and allows for its application to areas of continuous materials discovery, screening, and manufacturing. Here, the platform is used for the rapid production of pharmaceutical particles that are highly spherical and uniform, key targets for flowability, and ultimately manufacturability of pharmaceutical drug products. The presented platform achieves a maximum throughput of over 100 g per day, enabling characterization of the superior powder flow properties. The available operating space of this platform is demonstrated for an antisolvent crystallization process with an anti-malarial drug. This understanding provides design guidelines for how similar platforms may be engineered for precise, rapid, customized, and distributed manufacturing of drug particles with superior flowability.
Date issued
2021
URI
https://hdl.handle.net/1721.1/134138
Department
Singapore-MIT Alliance in Research and Technology (SMART); Massachusetts Institute of Technology. Department of Chemical Engineering
Journal
Advanced Materials Technologies
Publisher
Wiley

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.