Show simple item record

dc.contributor.authorFanelli, Cristiano
dc.contributor.authorWilliams, Michael
dc.date.accessioned2022-09-14T18:45:21Z
dc.date.available2021-10-27T19:58:27Z
dc.date.available2022-09-14T18:45:21Z
dc.date.issued2020
dc.identifier.urihttps://hdl.handle.net/1721.1/134167.2
dc.description.abstract© 2020 IOP Publishing Ltd and Sissa Medialab. Advanced detector R&D requires performing computationally intensive and detailed simulations as part of the detector-design optimization process. We propose a general approach to this process based on Bayesian optimization and machine learning that encodes detector requirements. As a case study, we focus on the design of the dual-radiator Ring Imaging Cherenkov (dRICH) detector under development as a potential component of the particle-identification system at the future Electron-Ion Collider (EIC). The EIC is a US-led frontier accelerator project for nuclear physics, which has been proposed to further explore the structure and interactions of nuclear matter at the scale of sea quarks and gluons. We show that the detector design obtained with our automated and highly parallelized framework outperforms the baseline dRICH design within the assumptions of the current model. Our approach can be applied to any detector R&D, provided that realistic simulations are available.en_US
dc.language.isoen
dc.publisherIOP Publishingen_US
dc.relation.isversionof10.1088/1748-0221/15/05/P05009en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleAI-optimized detector design for the future Electron-Ion Collider: the dual-radiator RICH caseen_US
dc.typeArticleen_US
dc.contributor.departmentMassachusetts Institute of Technology. Laboratory for Nuclear Scienceen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Physicsen_US
dc.relation.journalJournal of Instrumentationen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2020-11-18T16:59:02Z
dspace.orderedauthorsCisbani, E; Dotto, AD; Fanelli, C; Williams, M; Alfred, M; Barbosa, F; Barion, L; Berdnikov, V; Brooks, W; Cao, T; Contalbrigo, M; Danagoulian, S; Datta, A; Demarteau, M; Denisov, A; Diefenthaler, M; Durum, A; Fields, D; Furletova, Y; Gleason, C; Grosse-Perdekamp, M; Hattawy, M; He, X; Hecke, HV; Higinbotham, D; Horn, T; Hyde, C; Ilieva, Y; Kalicy, G; Kebede, A; Kim, B; Liu, M; McKisson, J; Mendez, R; Nadel-Turonski, P; Pegg, I; Romanov, D; Sarsour, M; Silva, CLD; Stevens, J; Sun, X; Syed, S; Towell, R; Xie, J; Zhao, ZW; Zihlmann, B; Zorn, Cen_US
dspace.date.submission2020-11-18T16:59:09Z
mit.journal.volume15en_US
mit.journal.issue05en_US
mit.licenseOPEN_ACCESS_POLICY
mit.metadata.statusPublication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

VersionItemDateSummary

*Selected version