MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Corona Discharge in Wind for Electrically Isolated Electrodes

Author(s)
Guerra-Garcia, C; Nguyen, NC; Mouratidis, T; Martinez-Sanchez, M
Thumbnail
DownloadPublished version (5.643Mb)
Publisher Policy

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
©2020. American Geophysical Union. All Rights Reserved. For various problems in atmospheric electricity it is necessary to understand the behavior of corona discharge in wind. Prior work considers grounded electrode systems, of relevance for earthed towers, trees, or windmills subjected to thunderstorms fields. In this configuration, the effect of wind is to remove the shielding ions from the coronating electrode vicinity strengthening the corona and increasing its current. There are a number of cases, such as isolated wind turbine blades or airborne vehicles, that are not completely represented by the available models and experiments. This paper focuses on electrode systems that are electrically isolated from their environment and reports on a wind tunnel campaign and accompanying theoretical work. In this configuration, there are two competing effects: the removal of the shielding ions by the wind, strengthening the corona; and the electrode system charging negatively (for positive corona) with respect to its environment, weakening the corona. This leads to three different operating regimes; namely, for positions that favor ion recapture, charging is limited and current increases with wind as in the classical scaling; for positions that favor ion transport by the wind, the system charges negatively and the current decreases with wind; for the later configuration, as wind increases, the current can vanish and the system potential saturates. The results from this work demonstrate that classical scaling laws of corona discharge in wind do not necessarily apply for isolated electrodes and illustrate the feasibility of using a glow corona in wind for controlled charging of a floating body.
Date issued
2020
URI
https://hdl.handle.net/1721.1/134168
Department
Massachusetts Institute of Technology. Department of Aeronautics and Astronautics
Journal
Journal of Geophysical Research: Atmospheres
Publisher
American Geophysical Union (AGU)

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.