MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A nested hybridizable discontinuous Galerkin method for computing second-harmonic generation in three-dimensional metallic nanostructures

Author(s)
Vidal-Codina, F; Nguyen, N-C; Ciracì, C; Oh, S-H; Peraire, J
Thumbnail
DownloadAccepted version (4.667Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution-NonCommercial-NoDerivs License http://creativecommons.org/licenses/by-nc-nd/4.0/
Metadata
Show full item record
Abstract
© 2020 Elsevier Inc. We develop a nested hybridizable discontinuous Galerkin (HDG) method to numerically solve the Maxwell's equations coupled with a hydrodynamic model for the conduction-band electrons in metals. The HDG method leverages static condensation to eliminate the degrees of freedom of the approximate solution defined in the elements, yielding a linear system in terms of the degrees of freedom of the approximate trace defined on the element boundaries. This article presents a computational method that relies on a degree-of-freedom reordering such that the HDG linear system accommodates an additional static condensation step to eliminate a large portion of the degrees of freedom of the approximate trace, thereby yielding a much smaller linear system. For the particular metallic structures considered in this article, the resulting linear system obtained by means of nested static condensations is a block tridiagonal system, which can be solved efficiently. We apply the nested HDG method to compute second harmonic generation on a triangular coaxial periodic nanogap structure. This nonlinear optics phenomenon features rapid field variations and extreme boundary-layer structures that span a wide range of length scales. Numerical results show that the ability to identify structures which exhibit resonances at ω and 2ω is essential to excite the second harmonic response.
Date issued
2021
URI
https://hdl.handle.net/1721.1/134192
Department
Massachusetts Institute of Technology. Department of Aeronautics and Astronautics
Journal
Journal of Computational Physics
Publisher
Elsevier BV

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.