MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Low-N protein engineering with data-efficient deep learning

Author(s)
Biswas, Surojit; Khimulya, Grigory; Alley, Ethan C; Esvelt, Kevin M; Church, George M
Thumbnail
DownloadSubmitted version (2.010Mb)
Open Access Policy

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Protein engineering has enormous academic and industrial potential. However, it is limited by the lack of experimental assays that are consistent with the design goal and sufficiently high throughput to find rare, enhanced variants. Here we introduce a machine learning-guided paradigm that can use as few as 24 functionally assayed mutant sequences to build an accurate virtual fitness landscape and screen ten million sequences via in silico directed evolution. As demonstrated in two dissimilar proteins, GFP from Aequorea victoria (avGFP) and E. coli strain TEM-1 β-lactamase, top candidates from a single round are diverse and as active as engineered mutants obtained from previous high-throughput efforts. By distilling information from natural protein sequence landscapes, our model learns a latent representation of 'unnaturalness', which helps to guide search away from nonfunctional sequence neighborhoods. Subsequent low-N supervision then identifies improvements to the activity of interest. In sum, our approach enables efficient use of resource-intensive high-fidelity assays without sacrificing throughput, and helps to accelerate engineered proteins into the fermenter, field and clinic.
Date issued
2021
URI
https://hdl.handle.net/1721.1/134193
Department
Massachusetts Institute of Technology. Media Laboratory
Journal
Nature Methods
Publisher
Springer Science and Business Media LLC

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.