MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Simplifying dependent reductions in the polyhedral model

Author(s)
Yang, Cambridge; Atkinson, Eric; Carbin, Michael
Thumbnail
DownloadPublished version (1.384Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution NoDerivatives 4.0 International License. http://creativecommons.org/licenses/by-nd/4.0/
Metadata
Show full item record
Abstract
© 2021 Owner/Author. A Reduction-an accumulation over a set of values, using an associative and commutative operator-is a common computation in many numerical computations, including scientific computations, machine learning, computer vision, and financial analytics. Contemporary polyhedral-based compilation techniques make it possible to optimize reductions, such as prefix sums, in which each component of the reduction's output potentially shares computation with another component in the reduction. Therefore an optimizing compiler can identify the computation shared between multiple components and generate code that computes the shared computation only once. These techniques, however, do not support reductions that-when phrased in the language of the polyhedral model-span multiple dependent statements. In such cases, existing approaches can generate incorrect code that violates the data dependences of the original, unoptimized program. In this work, we identify and formalize the optimization of dependent reductions as an integer bilinear program. We present a heuristic optimization algorithm that uses an affine sequential schedule of the program to determine how to simplfy reductions yet still preserve the program's dependences. We demonstrate that the algorithm provides optimal complexity for a set of benchmark programs from the literature on probabilistic inference algorithms, whose performance critically relies on simplifying these reductions. The complexities for 10 of the 11 programs improve siginifcantly by factors at least of the sizes of the input data, which are in the range of 104 to 106 for typical real application inputs. We also confirm the significance of the improvement by showing speedups in wall-clock time that range from 1.1x to over 106x.
Date issued
2021
URI
https://hdl.handle.net/1721.1/134205
Department
Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory
Journal
Proceedings of the ACM on Programming Languages
Publisher
Association for Computing Machinery (ACM)

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.