MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Molecular Assembly-Induced Charge Transfer for Programmable Functionalities

Author(s)
Zhang, Zhuolei; Li, Huashan; Luo, Zhipu; Chang, Shuquan; Li, Zheng; Guan, Mengmeng; Zhou, Ziyao; Liu, Ming; Grossman, Jeffrey C; Ren, Shenqiang; ... Show more Show less
Thumbnail
DownloadAccepted version (5.215Mb)
Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
© 2017 American Chemical Society. The donor-acceptor interface within molecular charge transfer (CT) solids plays a vital role in the hybridization of molecular orbitals to determine their carrier transport and electronic delocalization. In this study, we demonstrate molecular assembly-driven bilayer and crystalline solids, consisting of electron donor dibenzotetrathiafulvalene (DBTTF) and acceptor C60, in which interfacial engineering-induced CT degree control is a key parameter for tuning its optical, electronic, and magnetic performance. Compared to the DBTTF/C60 bilayer structure, the DBTTFC60 cocrystalline solids show a stronger degree of charge transfer for broad CT absorption and a large dielectric constant. In addition, the DBTTFC60 cocrystals exhibit distinct CT arrangement-driven anisotropic electron mobility and spin characteristics, which further enables the development of high-penetration and high-energy γ-ray photodetectors. The results presented in this paper provide a basis for the design and control of molecular charge transfer solids, which facilitates the integration of such materials into molecular electronics.
Date issued
2017
URI
https://hdl.handle.net/1721.1/134331
Department
Massachusetts Institute of Technology. Department of Materials Science and Engineering
Journal
Chemistry of Materials
Publisher
American Chemical Society (ACS)

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.