MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Spectroscopic analysis in molecular simulations with discretized Wiener-Khinchin theorem for Fourier-Laplace transformation

Author(s)
Koyama, Akira; Nicholson, David A; Andreev, Marat; Rutledge, Gregory C; Fukao, Koji; Yamamoto, Takashi; ... Show more Show less
Thumbnail
DownloadPublished version (3.109Mb)
Publisher Policy

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
© 2020 American Physical Society. The Wiener-Khinchin theorem for the Fourier-Laplace transformation (WKT-FLT) provides a robust method to obtain the single-side Fourier transforms of arbitrary time-domain relaxation functions (or autocorrelation functions). Moreover, by combining an on-The-fly algorithm with the WKT-FLT, the numerical calculations of various complex spectroscopic data in a wide frequency range become significantly more efficient. However, the discretized WKT-FLT equation, obtained simply by replacing the integrations with the discrete summations, always produces two artifacts in the frequency-domain relaxation function. In addition, the artifacts become more apparent in the frequency-domain response function converted from the relaxation function. We find the sources of these artifacts that are associated with the discretization of the WKT-FLT equation. Taking these sources into account, we derive discretized WKT-FLT equations designated for both the frequency-domain relaxation and response functions with the artifacts removed. The use of the discretized WKT-FLT equations with the on-The-fly algorithm is illustrated by a flow chart. We also give application examples for the wave-vector-dependent dynamic susceptibility in an isotropic amorphous polyethylene and the frequency-domain response functions of the orientation vectors in an n-Alkane crystal.
Date issued
2020
URI
https://hdl.handle.net/1721.1/134338
Department
Massachusetts Institute of Technology. Department of Chemical Engineering
Journal
Physical Review E
Publisher
American Physical Society (APS)

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.