Show simple item record

dc.contributor.authorHütter, Jan-Christian
dc.contributor.authorMao, Cheng
dc.contributor.authorRigollet, Philippe
dc.contributor.authorRobeva, Elina
dc.date.accessioned2021-10-27T20:04:32Z
dc.date.available2021-10-27T20:04:32Z
dc.date.issued2020
dc.identifier.urihttps://hdl.handle.net/1721.1/134345
dc.description.abstract© 2020, Institute of Mathematical Statistics. All rights reserved. We study minimax estimation of two-dimensional totally positive distributions. Such distributions pertain to pairs of strongly positively dependent random variables and appear frequently in statistics and probability. In particular, for distributions with β-Hölder smooth densities where β ∈ (0, 2), we observe polynomially faster minimax rates of estimation when, additionally, the total positivity condition is imposed. Moreover, we demonstrate fast algorithms to compute the proposed estimators and corroborate the theoretical rates of estimation by simulation studies.
dc.language.isoen
dc.publisherInstitute of Mathematical Statistics
dc.relation.isversionof10.1214/20-EJS1729
dc.rightsCreative Commons Attribution 4.0 International license
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.sourceElectronic Journal of Statistics
dc.titleOptimal rates for estimation of two-dimensional totally positive distributions
dc.typeArticle
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematics
dc.relation.journalElectronic Journal of Statistics
dc.eprint.versionFinal published version
dc.type.urihttp://purl.org/eprint/type/JournalArticle
eprint.statushttp://purl.org/eprint/status/PeerReviewed
dc.date.updated2021-05-26T13:28:56Z
dspace.orderedauthorsHütter, J-C; Mao, C; Rigollet, P; Robeva, E
dspace.date.submission2021-05-26T13:28:58Z
mit.journal.volume14
mit.journal.issue2
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Needed


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record