MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

lncRNA DIGIT and BRD3 protein form phase-separated condensates to regulate endoderm differentiation

Author(s)
Daneshvar, Kaveh; Ardehali, M Behfar; Klein, Isaac A; Hsieh, Fu-Kai; Kratkiewicz, Arcadia J; Mahpour, Amin; Cancelliere, Sabrina OL; Zhou, Chan; Cook, Brett M; Li, Wenyang; Pondick, Joshua V; Gupta, Sweta K; Moran, Sean P; Young, Richard A; Kingston, Robert E; Mullen, Alan C; ... Show more Show less
Thumbnail
DownloadAccepted version (5.881Mb)
Publisher Policy

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
© 2020, The Author(s), under exclusive licence to Springer Nature Limited. Cooperation between DNA, RNA and protein regulates gene expression and controls differentiation through interactions that connect regions of nucleic acids and protein domains and through the assembly of biomolecular condensates. Here, we report that endoderm differentiation is regulated by the interaction between the long non-coding RNA (lncRNA) DIGIT and the bromodomain and extraterminal domain protein BRD3. BRD3 forms phase-separated condensates of which the formation is promoted by DIGIT, occupies enhancers of endoderm transcription factors and is required for endoderm differentiation. BRD3 binds to histone H3 acetylated at lysine 18 (H3K18ac) in vitro and co-occupies the genome with H3K18ac. DIGIT is also enriched in regions of H3K18ac, and the depletion of DIGIT results in decreased recruitment of BRD3 to these regions. Our findings show that cooperation between DIGIT and BRD3 at regions of H3K18ac regulates the transcription factors that drive endoderm differentiation and suggest that protein–lncRNA phase-separated condensates have a broader role as regulators of transcription.
Date issued
2020
URI
https://hdl.handle.net/1721.1/134367
Department
Massachusetts Institute of Technology. Department of Biology; Whitehead Institute for Biomedical Research
Journal
Nature Cell Biology
Publisher
Springer Science and Business Media LLC

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Instagram YouTube

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.