Show simple item record

dc.contributor.authorLauritzen, Steffen
dc.contributor.authorUhler, Caroline
dc.contributor.authorZweirnik, Piotr
dc.date.accessioned2022-07-08T20:07:40Z
dc.date.available2021-10-27T20:04:56Z
dc.date.available2022-07-08T20:07:40Z
dc.date.issued2019
dc.identifier.urihttps://hdl.handle.net/1721.1/134422.2
dc.description.abstract© 2019 Institute of Mathematical Statistics. We analyze the problem of maximum likelihood estimation for Gaussian distributions that are multivariate totally positive of order two (MTP2). By exploiting connections to phylogenetics and single-linkage clustering, we give a simple proof that the maximum likelihood estimator (MLE) for such distributions exists based on n = 2 observations, irrespective of the underlying dimension. Slawski and Hein [Linear Algebra Appl. 473 (2015) 145-179], who first proved this result, also provided empirical evidence showing that the MTP2 constraint serves as an implicit regularizer and leads to sparsity in the estimated inverse covariance matrix, determining what we name the ML graph. We show that we can find an upper bound for the ML graph by adding edges corresponding to correlations in excess of those explained by the maximum weight spanning forest of the correlation matrix. Moreover, we provide globally convergent coordinate descent algorithms for calculating the MLE under the MTP2 constraint which are structurally similar to iterative proportional scaling. We conclude the paper with a discussion of signed MTP2 distributions.en_US
dc.language.isoen
dc.publisherInstitute of Mathematical Statisticsen_US
dc.relation.isversionof10.1214/17-AOS1668en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleMaximum likelihood estimation in Gaussian models under total positivityen_US
dc.typeArticleen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.relation.journalThe Annals of Statisticsen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2019-07-09T18:10:20Z
dspace.orderedauthorsLauritzen, S; Uhler, C; Zwiernik, Pen_US
dspace.date.submission2019-07-09T18:10:20Z
mit.journal.volume47en_US
mit.journal.issue4en_US
mit.metadata.statusPublication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

VersionItemDateSummary

*Selected version