MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Sorting and Selection in Posets

Author(s)
Daskalakis, Constantinos; Karp, Richard M; Mossel, Elchanan; Riesenfeld, Samantha J; Verbin, Elad
Thumbnail
DownloadPublished version (311.9Kb)
Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Classical problems of sorting and searching assume an underlying linear ordering of the objects being compared. In this paper, we study these problems in the context of partially ordered sets, in which some pairs of objects are incomparable. This generalization is interesting from a combinatorial perspective, and it has immediate applications in ranking scenarios where there is no underlying linear ordering, e.g., conference submissions. It also has applications in reconstructing certain types of networks, including biological networks. Our results represent significant progress over previous results from two decades ago by Faigle and Turán. In particular, we present the first algorithm that sorts a width-w poset of size n with query complexity O(n(w + log n)) and prove that this query complexity is asymptotically optimal. We also describe a variant of Mergesort with query complexity O(wn log n/w ) and total complexity O(w2n log n/w ); an algorithm with the same query complexity was given by Faigle and Turán, but no efficient implementation of that algorithm is known. Both our sorting algorithms can be applied with negligible overhead to the more general problem of reconstructing transitive relations. We also consider two related problems: finding the minimal elements, and its generalization to finding the bottom k "levels," called the k-selection problem. We give efficient deterministic and randomized algorithms for finding the minimal elements with query complexity and total complexity O(wn). We provide matching lower bounds for the query complexity up to a factor of 2 and generalize the results to the k-selection problem. Finally, we present efficient algorithms for computing a linear extension of a poset and computing the heights of all elements. © 2011 Society for Industrial and Applied Mathematics.
Date issued
2011
URI
https://hdl.handle.net/1721.1/134507
Department
Massachusetts Institute of Technology. Department of Mathematics
Journal
SIAM Journal on Computing
Publisher
Society for Industrial & Applied Mathematics (SIAM)

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.