Show simple item record

dc.contributor.authorDe Sole, Alberto
dc.contributor.authorKac, Victor G
dc.contributor.authorValeri, Daniele
dc.date.accessioned2021-10-27T20:05:20Z
dc.date.available2021-10-27T20:05:20Z
dc.date.issued2016
dc.identifier.urihttps://hdl.handle.net/1721.1/134509
dc.description.abstract© 2016, Springer-Verlag Berlin Heidelberg. We develop a new method for constructing integrable Hamiltonian hierarchies of Lax type equations, which combines the fractional powers technique of Gelfand and Dickey, and the classical Hamiltonian reduction technique of Drinfeld and Sokolov. The method is based on the notion of an Adler type matrix pseudodifferential operator and the notion of a generalized quasideterminant. We also introduce the notion of a dispersionless Adler type series, which is applied to the study of dispersionless Hamiltonian equations. Non-commutative Hamiltonian equations are discussed in this framework as well.
dc.language.isoen
dc.publisherSpringer Nature America, Inc
dc.relation.isversionof10.1007/S00220-016-2684-X
dc.rightsCreative Commons Attribution-Noncommercial-Share Alike
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.sourcearXiv
dc.titleA New Scheme of Integrability for (bi)Hamiltonian PDE
dc.typeArticle
dc.identifier.citationDe Sole, Alberto, Victor G. Kac, and Daniele Valeri. "A New Scheme of Integrability for (Bi)Hamiltonian Pde." Communications in Mathematical Physics 347 2 (2016): 449-88.
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematics
dc.relation.journalCommunications in Mathematical Physics
dc.eprint.versionAuthor's final manuscript
dc.type.urihttp://purl.org/eprint/type/JournalArticle
eprint.statushttp://purl.org/eprint/status/PeerReviewed
dc.date.updated2021-04-28T16:08:02Z
dspace.orderedauthorsDe Sole, A; Kac, VG; Valeri, D
dspace.date.submission2021-04-28T16:08:03Z
mit.journal.volume347
mit.journal.issue2
mit.licenseOPEN_ACCESS_POLICY
mit.metadata.statusAuthority Work and Publication Information Needed


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record