Notice

This is not the latest version of this item. The latest version can be found at:https://dspace.mit.edu/handle/1721.1/134541.2

Show simple item record

dc.date.accessioned2021-10-27T20:05:28Z
dc.date.available2021-10-27T20:05:28Z
dc.date.issued2021
dc.identifier.urihttps://hdl.handle.net/1721.1/134541
dc.description.abstract<jats:title>Abstract</jats:title><jats:p>The move from reading to writing the human genome offers new opportunities to improve human health. The United States National Institutes of Health (NIH) Somatic Cell Genome Editing (SCGE) Consortium aims to accelerate the development of safer and more-effective methods to edit the genomes of disease-relevant somatic cells in patients, even in tissues that are difficult to reach. Here we discuss the consortium’s plans to develop and benchmark approaches to induce and measure genome modifications, and to define downstream functional consequences of genome editing within human cells. Central to this effort is a rigorous and innovative approach that requires validation of the technology through third-party testing in small and large animals. New genome editors, delivery technologies and methods for tracking edited cells in vivo, as well as newly developed animal models and human biological systems, will be assembled—along with validated datasets—into an SCGE Toolkit, which will be disseminated widely to the biomedical research community. We visualize this toolkit—and the knowledge generated by its applications—as a means to accelerate the clinical development of new therapies for a wide range of conditions.</jats:p>
dc.language.isoen
dc.publisherSpringer Science and Business Media LLC
dc.relation.isversionof10.1038/s41586-021-03191-1
dc.rightsCreative Commons Attribution 4.0 International license
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.sourceNature
dc.titleThe NIH Somatic Cell Genome Editing program
dc.typeArticle
dc.relation.journalNature
dc.eprint.versionFinal published version
dc.type.urihttp://purl.org/eprint/type/JournalArticle
eprint.statushttp://purl.org/eprint/status/PeerReviewed
dc.date.updated2021-06-04T17:57:18Z
dspace.orderedauthorsSaha, K; Sontheimer, EJ; Brooks, PJ; Dwinell, MR; Gersbach, CA; Liu, DR; Murray, SA; Tsai, SQ; Wilson, RC; Anderson, DG; Asokan, A; Banfield, JF; Bankiewicz, KS; Bao, G; Bulte, JWM; Bursac, N; Campbell, JM; Carlson, DF; Chaikof, EL; Chen, Z-Y; Cheng, RH; Clark, KJ; Curiel, DT; Dahlman, JE; Deverman, BE; Dickinson, ME; Doudna, JA; Ekker, SC; Emborg, ME; Feng, G; Freedman, BS; Gamm, DM; Gao, G; Ghiran, IC; Glazer, PM; Gong, S; Heaney, JD; Hennebold, JD; Hinson, JT; Khvorova, A; Kiani, S; Lagor, WR; Lam, KS; Leong, KW; Levine, JE; Lewis, JA; Lutz, CM; Ly, DH; Maragh, S; McCray, PB; McDevitt, TC; Mirochnitchenko, O; Morizane, R; Murthy, N; Prather, RS; Ronald, JA; Roy, S; Roy, S; Sabbisetti, V; Saltzman, WM; Santangelo, PJ; Segal, DJ; Shimoyama, M; Skala, MC; Tarantal, AF; Tilton, JC; Truskey, GA; Vandsburger, M; Watts, JK; Wells, KD; Wolfe, SA; Xu, Q; Xue, W; Yi, G; Zhou, J
dspace.date.submission2021-06-04T17:57:19Z
mit.journal.volume592
mit.journal.issue7853
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Needed


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

VersionItemDateSummary

*Selected version