MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Galaxy formation with BECDM – I. Turbulence and relaxation of idealized haloes

Author(s)
Mocz, Philip; Vogelsberger, Mark; Robles, Victor H; Zavala, Jesús; Boylan-Kolchin, Michael; Fialkov, Anastasia; Hernquist, Lars; ... Show more Show less
Thumbnail
DownloadAccepted version (3.448Mb)
Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
© 2018 The Author(s). We present a theoretical analysis of some unexplored aspects of relaxed Bose-Einstein condensate dark matter (BECDM) haloes. This type of ultralight bosonic scalar field dark matter is a viable alternative to the standard cold dark matter (CDM) paradigm, as it makes the same large-scale predictions as CDM and potentially overcomes CDM's small-scale problems via a galaxy-scale de Broglie wavelength. We simulate BECDM halo formation through mergers, evolved under the Schrödinger-Poisson equations. The formed haloes consist of a soliton core supported against gravitational collapse by the quantum pressure tensor and an asymptotic r-3 NFW-like profile. We find a fundamental relation of the core-to-halo mass with the dimensionless invariant Θ ≡ |E|/M3/(Gm/h)2 or Mc/M ≃ 2.6Θ1/3, linking the soliton to global halo properties. For r ≥ 3.5 rc core radii, we find equipartition between potential, classical kinetic and quantum gradient energies. The haloes also exhibit a conspicuous turbulent behaviour driven by the continuous reconnection of vortex lines due to wave interference. We analyse the turbulence 1D velocity power spectrum and find a k-1.1 power law. This suggests that the vorticity in BECDM haloes is homogeneous, similar to thermally-driven counterflow BEC systems from condensed matter physics, in contrast to a k-5/3 Kolmogorov power law seen in mechanically-driven quantum systems. The mode where the power spectrum peaks is approximately the soliton width, implying that the soliton-sized granules carry most of the turbulent energy in BECDM haloes.
Date issued
2017
URI
https://hdl.handle.net/1721.1/134592
Department
Massachusetts Institute of Technology. Department of Physics; MIT Kavli Institute for Astrophysics and Space Research
Journal
Monthly Notices of the Royal Astronomical Society
Publisher
Oxford University Press (OUP)

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.