MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Reversible Polycondensation-Termination Growth of Covalent-Organic-Framework Spheres, Fibers, and Films

Author(s)
Wang, Song; Zhang, Ziyang; Zhang, Haomiao; Rajan, Ananth Govind; Xu, Nan; Yang, Yuhao; Zeng, Yuwen; Liu, Pingwei; Zhang, Xiaohu; Mao, Qiying; He, Yi; Zhao, Junjie; Li, Bo-Geng; Strano, Michael S; Wang, Wen-Jun; ... Show more Show less
Thumbnail
DownloadAccepted version (3.056Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution-NonCommercial-NoDerivs License http://creativecommons.org/licenses/by-nc-nd/4.0/
Metadata
Show full item record
Abstract
© 2019 Elsevier Inc. Covalent organic frameworks (COFs) possessing well-defined nanopore structures can precisely control the transport of molecules through them, thereby promising applications in separations, gas storage, sensing, and catalysis. However, such applications are compromised by the low crystallinity and, thus, poor morphology control of COFs. Here, we introduce a reversible polycondensation-termination (RPT) approach. By simultaneously introducing two monofunctional competitors into reaction systems, the RPT approach selectively generates spherical, fibrous, and membranous COFs with highly ordered structures up to centimeter dimensions. The monofunctional competitors can reversibly terminate/activate the polycondensation reaction between monomers during the COF synthesis by dynamically combining with reactive functional groups of monomers. As a proof of concept, we applied the COF film to microreactions with high catalytic activities as well as rapid vapor sensor with repeatable color change.
Date issued
2019
URI
https://hdl.handle.net/1721.1/134632
Department
Massachusetts Institute of Technology. Department of Chemical Engineering
Journal
Matter
Publisher
Elsevier BV

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.