Show simple item record

dc.contributor.authorIsaacs, Farren J
dc.contributor.authorCarr, Peter A
dc.contributor.authorWang, Harris H
dc.contributor.authorLajoie, Marc J
dc.contributor.authorSterling, Bram
dc.contributor.authorKraal, Laurens
dc.contributor.authorTolonen, Andrew C
dc.contributor.authorGianoulis, Tara A
dc.contributor.authorGoodman, Daniel B
dc.contributor.authorReppas, Nikos B
dc.contributor.authorEmig, Christopher J
dc.contributor.authorBang, Duhee
dc.contributor.authorHwang, Samuel J
dc.contributor.authorJewett, Michael C
dc.contributor.authorJacobson, Joseph M
dc.contributor.authorChurch, George M
dc.date.accessioned2021-10-27T20:05:55Z
dc.date.available2021-10-27T20:05:55Z
dc.date.issued2011
dc.identifier.urihttps://hdl.handle.net/1721.1/134637
dc.description.abstractWe present genome engineering technologies that are capable of fundamentally reengineering genomes from the nucleotide to the megabase scale. We used multiplex automated genome engineering (MAGE) to site-specifically replace all 314 TAG stop codons with synonymous TAA codons in parallel across 32 Escherichia coli strains. This approach allowed us to measure individual recombination frequencies, confirm viability for each modification, and identify associated phenotypes. We developed hierarchical conjugative assembly genome engineering (CAGE) to merge these sets of codon modifications into genomes with 80 precise changes, which demonstrate that these synonymous codon substitutions can be combined into higher-order strains without synthetic lethal effects. Our methods treat the chromosome as both an editable and an evolvable template, permitting the exploration of vast genetic landscapes.
dc.language.isoen
dc.publisherAmerican Association for the Advancement of Science (AAAS)
dc.relation.isversionof10.1126/science.1205822
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
dc.sourcePMC
dc.titlePrecise Manipulation of Chromosomes in Vivo Enables Genome-Wide Codon Replacement
dc.typeArticle
dc.contributor.departmentMassachusetts Institute of Technology. Center for Bits and Atoms
dc.contributor.departmentMassachusetts Institute of Technology. Media Laboratory
dc.contributor.departmentHarvard University--MIT Division of Health Sciences and Technology
dc.contributor.departmentMassachusetts Institute of Technology. Department of Materials Science and Engineering
dc.relation.journalScience
dc.eprint.versionAuthor's final manuscript
dc.type.urihttp://purl.org/eprint/type/JournalArticle
eprint.statushttp://purl.org/eprint/status/PeerReviewed
dc.date.updated2019-07-23T14:41:58Z
dspace.orderedauthorsIsaacs, FJ; Carr, PA; Wang, HH; Lajoie, MJ; Sterling, B; Kraal, L; Tolonen, AC; Gianoulis, TA; Goodman, DB; Reppas, NB; Emig, CJ; Bang, D; Hwang, SJ; Jewett, MC; Jacobson, JM; Church, GM
dspace.date.submission2019-07-23T14:41:59Z
mit.journal.volume333
mit.journal.issue6040
mit.metadata.statusAuthority Work and Publication Information Needed


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record