MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Multi-Material Tissue Engineering Scaffold with Hierarchical Pore Architecture

Author(s)
Morgan, Kathy Ye; Sklaviadis, Demetra; Tochka, Zachary L; Fischer, Kristin M; Hearon, Keith; Morgan, Thomas D; Langer, Robert; Freed, Lisa E; ... Show more Show less
Thumbnail
DownloadAccepted version (2.512Mb)
Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
© 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim Multi-material polymer scaffolds with multiscale pore architectures are characterized and tested with vascular and heart cells as part of a platform for replacing damaged heart muscle. Vascular and muscle scaffolds are constructed from a new material, poly(limonene thioether) (PLT32i), which meets the design criteria of slow biodegradability, elastomeric mechanical properties, and facile processing. The vascular–parenchymal interface is a poly(glycerol sebacate) (PGS) porous membrane that meets different criteria of rapid biodegradability, high oxygen permeance, and high porosity. A hierarchical architecture of primary (macroscale) and secondary (microscale) pores is created by casting the PLT32i prepolymer onto sintered spheres of poly(methyl methacrylate) (PMMA) within precisely patterned molds followed by photocuring, de-molding, and leaching out the PMMA. Prefabricated polymer templates are cellularized, assembled, and perfused in order to engineer spatially organized, contractile heart tissue. Structural and functional analyses show that the primary pores guide heart cell alignment and enable robust perfusion while the secondary pores increase heart cell retention and reduce polymer volume fraction.
Date issued
2016
URI
https://hdl.handle.net/1721.1/134666
Department
Harvard University--MIT Division of Health Sciences and Technology; Koch Institute for Integrative Cancer Research at MIT; Massachusetts Institute of Technology. Institute for Medical Engineering & Science
Journal
Advanced Functional Materials
Publisher
Wiley
Citation
Morgan, Kathy Ye, et al. "Multi-Material Tissue Engineering Scaffold with Hierarchical Pore Architecture." Advanced Functional Materials 26 32 (2016): 5873-83.
Version: Author's final manuscript

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.